
 1

TECHNOLOGY GUIDE
Intel Corporation

Multi Cloud Services – High Performance Computation
Modernization in Financial Services Industries

Authors
Petar Torre

Yury Kylulin

Bruno Domingues

Intel Corporation

Shay Naeh

Cloudify

1 Introduction
Financial Services Industry and other vertical customers running High Performance
Computing (HPC) workloads with strict compute requirements and adopting Cloud
Native principles, require orchestration for managing Multi-Cloud and Edge services that
may run from edge to data center. This guide describes how the Monte Carlo simulation
application benefits from Intel® Advanced Vector Instructions 512 (Intel® AVX-512), and
how such containerized application can be used on Kubernetes* cluster automated
across multiple clouds with Cloudify* orchestration platform.
The solution was developed as a public showcase demonstrating scalability, with robust
automation. It is loosely coupled and fully modular, respecting the boundaries of
orchestration, applications, software platform, and hardware platform layers. These
attributes ease the application on-boarding and lifecycle management efforts, while
allowing performance-optimized deployments. Figure 1 shows a high-level view of the
solution, which is described in detail in later sections of this document.

Figure 1. Multicloud Solution Layered Stack with Orchestration, Applications,
Software Platform, and Hardware Platform

The presence of identical cloud infrastructure hardware instances across multiple
locations minimizes the efforts of application migration, validation, and supporting of
hybrid cloud environments, and makes operations easier. Intel offers an unmatched
portfolio for the unique requirements of cloud and edge implementations and enables
open source ecosystem like Kubernetes and developers to take advantage of such
innovation.

This guide is intended for architects and engineers in Financial Services Industry and
other verticals with strict compute requirements, interested in best practices for
designing fully automated hybrid cloud environments based on Kubernetes-managed
containers.

This document is part of the Network Transformation Experience Kit, which is available at
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-
kits.

https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits
https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 2

Table of Contents
1 Introduction.. 1

1.1 Terminology ...4
1.2 Reference Documentation ...4
1.3 Motivation ...4

2 Monte Carlo Simulation and Intel AVX-512 ... 4
3 How Cloudify Orchestration Works .. 5

3.1 How to Select Node in Kubernetes Cluster ..6
3.2 Non-Kubernetes and Hybrid Environments ...7
3.3 Intent-Based Decoupling of Layers ..8

4 Software and Hardware Platform ... 9
4.1 Physical Topology ...9
4.2 Software Topology ... 10
4.3 Hardware Specifications .. 10
4.4 Software Specifications .. 11
4.5 Platform BIOS settings ... 12
4.6 Prepare Software Platform ... 13

4.6.1 Ansible Host, Control and Worker Node Software Prerequisites ... 13
4.6.2 Deploy Intel Bare Metal Reference Architecture Using Ansible Playbook .. 14

4.7 Intel Bare Metal Reference Architecture ... 15
4.8 Similar Setup in Public Cloud .. 15

5 Prepare Tenant Software .. 16
5.1 Linux Environment ... 16
5.2 Monte Carlo Simulation Binaries with Intel AVX-512 ... 16
5.3 Build Monte Carlo Container Image .. 17
5.4 Configure Pushgateway, Prometheus, and Grafana Under Docker ... 17
5.5 Cloudify Setup, Configuration and Importing Orchestration Blueprint .. 17

6 Orchestrating and Result .. 17
6.1 Orchestrating with Cloudify ... 17
6.2 Result in Grafana ... 19

7 Summary ... 19

Figures
Figure 1. Multicloud Solution Layered Stack with Orchestration, Applications, Software Platform and Hardware Platform .. 1
Figure 2. Cloudify Console View .. 5
Figure 3. Requirements for Central Cloudify Orchestrated to Distributed Sites .. 6
Figure 4. NFD in Kubernetes ... 6
Figure 5. List of NFD Labels ... 7
Figure 6. Monte Carlo Pod Placement with “nodeSelector” .. 7
Figure 7. Cloudify Console with Composer View ... 7
Figure 8. Cloudify Console with Deployments View ... 8
Figure 9. Intent-Based Placement .. 9
Figure 10. Physical Topology ... 10
Figure 11. Terraform Configuration ... 15
Figure 12. Describe Pod Correctly Assigned .. 18
Figure 13. Grafana Dashboard with Metrics ... 19

Tables
Table 1. Terminology .. 4
Table 2. Reference Documents .. 4
Table 3. Hardware Specifications ... 11
Table 4. Software Versions .. 11
Table 5. Platform BIOS Setting .. 12

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 3

Document Revision History

REVISION DATE DESCRIPTION

001 April 2021 Initial release.

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 4

1.1 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

AWS* Amazon Web Services*

BMRA Bare Metal Reference Architecture

EPA Enhanced Platform Awareness

K8s* Kubernetes*

NFD Node Feature Discovery

NUMA Non-Uniform Memory Access

TOSCA Topology and Orchestration Specification for Cloud Applications

VPC Virtual Private Cloud

1.2 Reference Documentation

Table 2. Reference Documents

REFERENCE SOURCE

All sources for this white paper https://github.com/intel/Financial-Services-Workload-Samples

Cloudify website https://cloudify.co/

Intel® Network Builders website for
Containers Experience Kits

https://networkbuilders.intel.com/network-technologies/container-experience-kits

Container Bare Metal for 2nd Generation
Intel® Xeon® Scalable Processor Reference
Architecture (installation guide)

https://builders.intel.com/docs/networkbuilders/container-bare-metal-for-2nd-generation-intel-
xeon-scalable-processor.pdf

Node Feature Discovery Application Note https://builders.intel.com/docs/networkbuilders/node-feature-discovery-application-note.pdf

Kubernetes CPU Manager – CPU Pinning
and Isolation

https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/,
https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/

Monte Carlo https://en.wikipedia.org/wiki/Monte_carlo_simulation#Finance_and_business

Intel Advanced Vector Extensions 512 https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html

1.3 Motivation
Not all Kubernetes nodes are created equally — Workloads such as low-latency trading in finance or Network Functions
Virtualization require fast processing of network traffic and special consideration for placement on physical servers where they can
benefit from appropriate hardware acceleration on certain Kubernetes nodes.

Edge environments — Even the biggest cloud environments consist of smaller data centers, some of which can run on small edge
or on-premises locations. The motivation for such design is usually a mix of bandwidth, latency, and privacy requirements. From a
workload placement perspective, it is essential to orchestrate which workloads are placed on which edges.

This type of solution is matured over several years in Communications Service Provider vertical, where the Kubernetes
enhancements (described in this guide) and many other features are being productized by major vendors like Red Hat as platform
foundation for key carrier network workloads to build modern 5G Core and virtualized Radio Access Networks.

2 Monte Carlo Simulation and Intel AVX-512
Monte Carlo simulation is commonly used to evaluate the risk and uncertainty that would affect the outcome of different decision
options. Monte Carlo methods are used in corporate finance and mathematical finance to value and analyze (complex) instruments,
portfolios, and investments by simulating the various sources of uncertainty affecting their value, and then determining the
distribution of their value over the range of resultant outcomes.

Monte Carlo algorithms are used to calculate the value of an option with multiple sources of uncertainties and random features,
such as changing interest rates, stock prices or exchange rates, etc. to evaluate complex instruments, portfolios, and investments.
Monte Carlo European options is a numerical method that uses statistical sampling techniques to approximate solutions to
quantitative problems. This is a compute-bound, double precision workload and benefits from Intel® Turbo Boost Technology and
Intel® Hyper-Threading Technology.

https://github.com/intel/Financial-Services-Workload-Samples
https://cloudify.co/
https://networkbuilders.intel.com/network-technologies/container-experience-kits
https://builders.intel.com/docs/networkbuilders/container-bare-metal-for-2nd-generation-intel-xeon-scalable-processor.pdf
https://builders.intel.com/docs/networkbuilders/container-bare-metal-for-2nd-generation-intel-xeon-scalable-processor.pdf
https://builders.intel.com/docs/networkbuilders/node-feature-discovery-application-note.pdf
https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/
https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/
https://en.wikipedia.org/wiki/Monte_carlo_simulation#Finance_and_business
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 5

Such simulations are based on vector type random number generators. Intel Advanced Vector Extensions 512 (Intel AVX-512) is a
set of instructions that can accelerate performance for workloads and usages such as scientific simulations, financial analytics,
artificial intelligence (AI)/deep learning, 3D modeling and analysis, image and audio/video processing, cryptography and data
compression.

Previous Intel® AVX2 contained most vector instructions of 256 bits. Intel AVX-512 doubles that width to 512 bits and can boost
performance for such demanding workloads.

There can be many types of Monte Carlo simulations with different requirements such as desired time to complete, or sensitivity
from other workloads etc. As a baseline for this guide, we assumed that simulation run needs to complete under certain time that
can vary slightly. It is also possible to configure the systems for more sensitive workloads requiring more predictability or for more
resilient (less sensitive) workloads that can run in shared cloud environments with impairments coming from the workload of other
tenants.

The achieved results show that the elapsed time to complete simulation runs with Intel AVX-512 is about half of the time taken with
Intel AVX2. This result correlates with doubling the width of vector instructions used.

3 How Cloudify Orchestration Works
Cloudify, as a global orchestrator, provisions workloads to run on distributed Kubernetes clusters based on a set of requirements
and available resources that match those requirements. Figure 2 shows the Cloudify console view.

Figure 2. Cloudify Console View

Figure 3 describes a multi-cloud network setting, orchestrated by Cloudify. The diagram shows four Kubernetes-managed locations
across multi-clouds. Each Kubernetes cluster supports a set of platform capabilities addressing different performance and
operation needs. Based on criteria such as location, resource availability, and special resource requirements, Cloudify provisions a
workload to the correct Kubernetes cluster. Yet this is only part of the work - each Kubernetes cluster is composed from multiple
nodes, each having different hardware capabilities. Cloudify works with Intel-led Kubernetes enhancements required for optimized
placement and performance of compute- or network-intensive workloads. This supports multiple capabilities like Node Selector for
CPU finding instructions, CPU Manager for pinning and isolation, Device Plugins for mapping acceleration devices to pods, and
Topology Manager for transparent assignment across NUMA nodes. In this demo of Monte Carlo compute-intensive application,
Cloudify maps the workload to the right Kubernetes nodes by using node labels and node selectors, while all intelligence about the
NUMA topology, CPU pinning, or assignment of specific hardware devices is performed within the software platform of Kubernetes,
Kubelet, and Linux*.

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 6

Figure 3. Requirements for Central Cloudify Orchestrated to Distributed Sites

3.1 How to Select Node in Kubernetes Cluster
Node Feature Discovery (NFD) is a Kubernetes add-on that detects and advertises hardware and software capabilities of a platform,
which in turn can be used to facilitate intelligent scheduling of a workload. By utilizing NFD, each Kubernetes node is labeled with a
list of the hardware capabilities it supports. Figure 4 shows an example that Single-Root Input/Output Virtualization (SR-IOV) and
Non-Uniform Memory Access (NUMA) are supported only by node 1, giving node 1 an advantage for supporting performance
sensitive workloads.

Figure 4. NFD in Kubernetes

Application node-selectors are defined in the YAML file as part of the pod deployment definition. These selectors are used to map
applications (pods) to nodes that support the required capabilities. See Figure 5 as an example of a list of possible node-selector
labels and Figure 6 as an example of a YAML file.

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 7

 node.alpha.kubernetes-incubator.io/nfd-cpuid-ADX: "true"
 node.alpha.kubernetes-incubator.io/nfd-cpuid-AESNI: "true"
 node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX2: "true"
 node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX512BW: "true"
 node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX512CD: "true"
 node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX512DQ: "true"
 node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX512F: "true"
 node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX512VL: "true"
 node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX: "true"
...

Figure 5. List of NFD Labels

apiVersion: v1
kind: Pod
metadata:
 name: montecarloavx512
 labels:
 name: montecarloavx512
spec:
 restartPolicy: Never
 nodeSelector:
 node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX512BW: "true"
...

Figure 6. Monte Carlo Pod Placement with “nodeSelector”

In the case of the demonstration discussed in this guide we provisioned1 (1) NodeJS pod on a generic Kubernetes node and (2)
Monte Carlo pod on a Kubernetes node identified per NFD with Intel AVX-512 capability that supports CPU instructions for vector
extensions. All the Kubernetes nodes supporting the Intel AVX-512 capability are grouped under a special group named AVX512. In
Figure 7, the QAT group is marked with a light blue background. This allocation is done on an on-premises Kubernetes cluster.

Figure 7. Cloudify Console with Composer View

3.2 Non-Kubernetes and Hybrid Environments
Cloudify can provision workloads on both Kubernetes and non-Kubernetes hybrid environments. As shown in Figure 8, workloads
can be provisioned to Amazon Web Services* (AWS*). A Virtual Private Cloud (VPC) environment is instantiated on AWS and a VM is
created in that VPC. By matching the workload requirements, Cloudify places the workload on the right node in AWS.

1 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary.

http://www.intel.com/PerformanceIndex

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 8

A mixture of Kubernetes and non-Kubernetes environments can be maintained by the orchestrator. Moreover, these environments
can be located on-premises or on any public cloud.

Figure 8. Cloudify Console with Deployments View

3.3 Intent-Based Decoupling of Layers
With the term “intent”, we mean that we specify the ‘what’ and not the ‘how’. The need for ‘CPU intensive’ hardware may differ
based on the environment because each environment may hold different definitions and parameters. If we decouple tenant user
from the environment, it makes the process of application placement to the platform simple and transparent. The user specifies the
requirements they need, and Cloudify will match those requirements with the right compute nodes per network definitions.

By utilizing Topology and Orchestration Specification for Cloud Applications (TOSCA), we can write an intent-based blueprint that
decouples application need from a Kubernetes cluster implementation. In this scenario, the tenant only needs to specify the
requirement for nodes with certain capabilities and Cloudify will match the right resources and provision the workloads correctly.

Intent-based definitions decouple the workload requirements from the underlying environment without changing anything at the
higher level of the workload definition. Even when changing the environment where the workload runs and moving the workload to
a new environment, Cloudify will look for the right resources and definitions on the new environment and will select them based on
the workload requirements.

TOSCA also helps in the ‘matching’ process. TOSCA defines Requirements and Capabilities primitives, where a user specifies in the
“Requirements” primitive what it needs, for example, CPU intensive or Network intensive and “Capabilities”. TOSCA also holds a list
of supported capabilities by a compute node. In Kubernetes, Requirements are defined by node selectors and Capabilities by node
labels. Hence, TOSCA definitions cover the generic use cases and are not restricted to Kubernetes environments, pods and nodes.

To summarize, TOSCA requirements and capabilities provide the mechanism to define a generic case for workload requirements
and map them to nodes that supports the capabilities to fulfill those requirements.

In Kubernetes specifically:
• TOSCA ‘Capabilities’ → Kubernetes node Label
• TOSCA ‘Requirements’ → Kubernetes node Selector

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 9

Figure 9. Intent-Based Placement

4 Software and Hardware Platform
4.1 Physical Topology
The physical topology2 for the testing uses a Kubernetes cluster based on one control node and two worker nodes. Both server
nodes are with Intel® Xeon® processor including Intel AVX-512. On a separate host, Ansible* runs in the ‘Ansible VM’ enabling
Kubernetes cluster installation using Bare Metal Reference Architecture (BMRA) v2.0.

2 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary.

http://www.intel.com/PerformanceIndex

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 10

Figure 10. Physical Topology

4.2 Software Topology

For the Kubernetes cluster and plugins setup, we used the Container Bare Metal Reference Architecture Ansible Playbook (available
as part of Container Bare Metal for 2nd and 3rd Generation Intel® Xeon® Scalable Processor). In addition, the Cloudify Manager was
installed to work with the cluster through RESTful APIs.

In this setup, we used the Node Feature Discovery capability of Kubernetes to demonstrate the role of intelligent workload
placement.

4.3 Hardware Specifications

This section lists the hardware components and systems that were utilized in this test setup3. The 3rd Generation Intel® Xeon®
Scalable processors feature a scalable, open architecture designed for the convergence of key workloads such as applications and
services, control plane processing, high-performance packet processing, and signal processing.

3 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary.

https://builders.intel.com/docs/networkbuilders/container-bare-metal-for-2nd-generation-intel-xeon-scalable-processor.pdf
http://www.intel.com/PerformanceIndex

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 11

Table 3. Hardware Specifications

ITEM DESCRIPTION NOTES

Platform Intel® Xeon® Processor Scalable Family Intel® Xeon® processor-based dual-processor server
board
2 x 25 GbE LAN ports

Processors 2x Intel® Xeon® Platinum 8352Y Processor Base configuration:
32 cores, 64 threads, 2.2 GHz, 205 W, 48 MB L3 total
cache per processor, 3 UPI Links, DDR4-3200, 8 memory
channels

Intel SpeedStep Performance Profile:
16 cores, 32 threads, 2.6 GHz, 185 W, 48 MB L3 total
cache per processor, 3 UPI Links, DDR4-3200, 8 memory
channels

2x Intel® Xeon® E5-2697v4 Processor 16 cores, 32 threads, 2.6 GHz, 145 W, 40 MB L3 total
cache per processor, 2 QPI Links, DDR4-2400, 4 memory
channels

Memory 1TB (16 x 64GB 3200MHz DDR RDIMM) or
minimum all 8
memory channels populated (1 DPC)

256 GB to 1 TB

Networking 2 x NICs - Required
Each NIC NUMA aligned

2 x Dual Port 25 GbE Intel® Ethernet Network Adapter
XXV710 SFP28+

2 x Dual Port 10 GbE Intel® Ethernet Converged Network
Adapter X722

Local Storage Intel SSD DC S3500

BIOS Intel Corporation
SE5C6200.86B.0020.P18.2102081146

Intel® Hyper-Threading Technology (Intel® HT
Technology) enabled
Intel® Virtualization Technology (Intel® VT-x) enabled
Intel® Virtualization Technology for Directed I/O (Intel®
VT-d) enabled
Intel® SpeedStep Technology (Intel® SST) enabled
Intel® SpeedStep Performance Profile (Intel® SST-PP)
enabled

Switches Huawei* S5700-52X-LI-AC
Huawei* CE8860-4C-EI with CE88-D24S2CQ
module

Management 1 GbE Switch
Dataplane 25 GbE Switch

4.4 Software Specifications

Table 4. Software Versions

SOFTWARE FUNCTION SOFTWARE COMPONENT LOCATION

Cloudify Cloudify Premium 5.1 https://cloudify.co/

Monte Carlo Simulation https://github.com/intel/Financial-Services-Workload-
Samples/tree/main/MonteCarloEuropeanOptions

Host OS CentOS* 7.9 build 2009
Kernel version: 3.10.0-
1160.15.2.el7.x86_64

https://www.centos.org/

Ansible Ansible v2.7.1 https://www.ansible.com/

BMRA 2.0 Ansible Playbook Master Playbook v1.0 https://github.com/intel/container-experience-kits

https://cloudify.co/
https://github.com/intel/Financial-Services-Workload-Samples/tree/main/MonteCarloEuropeanOptions
https://github.com/intel/Financial-Services-Workload-Samples/tree/main/MonteCarloEuropeanOptions
https://www.centos.org/
https://www.ansible.com/
https://github.com/intel/container-experience-kits

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 12

SOFTWARE FUNCTION SOFTWARE COMPONENT LOCATION

Python* Python 2.7 https://www.python.org/

Kubespray* Kubespray v2.8.0-31-g3c44ffc https://github.com/kubernetes-sigs/kubespray

Docker* Docker* 18.09.7-ce, build 2d0083d https://www.docker.com/

Container Orchestration
Engine

Kubernetes v1.16.7 https://github.com/kubernetes/kubernetes

Kubernetes CPU Manager

Included in Kubernetes https://github.com/kubernetes/examples/blob/master/
staging/cpu-manager/README.md

Node Feature Discovery NFD v0.3.0 https://github.com/kubernetes-sigs/node-feature-
discovery

Intel Ethernet Drivers https://sourceforge.net/projects/e1000/files/ixgbe%20
stable/5.2.1
https://sourceforge.net/projects/e1000/files/ixgbevf%
20stable/4.2.1
https://sourceforge.net/projects/e1000/files/i40e%20s
table/2.0.30
https://sourceforge.net/projects/e1000/files/i40evf%2
0stable/2.0.30

4.5 Platform BIOS settings4

Table 5. Platform BIOS Setting

MENU
(ADVANCED)

PATH TO
BIOS
SETTING

BIOS
SETTING

SETTINGS FOR
DETERMINISTIC
PERFORMANCE

SETTINGS FOR MAX
PERFORMANCE WITH
TURBO MODE ENABLED

REQUIRED
OR
RECOMMENDED

Power
Configuration

CPU P State
Control

EIST PSD
Function

HW_ALL SW_ALL Recommended

Boot Performance
Mode

Max.
Performance

Max.
Performance

Required

Energy Efficient Turbo Disable Disable Recommended

Turbo Mode Disable Enable Recommended

Intel® SpeedStep®
(Pstates)
Technology

Disable Enable Recommended

Hardware PM
State Control

Hardware P-
States

Disable Disable Recommended

CPU C State
Control

Autonomous
Core C-State

Disable Enable Recommended

CPU C6 Report Disable Disable Recommended

Enhanced Halt State
(C1E)

Disable Enable Recommended

4 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary.

https://www.python.org/
https://github.com/kubernetes-sigs/kubespray
https://www.docker.com/
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/examples/blob/master/staging/cpu-manager/README.md
https://github.com/kubernetes/examples/blob/master/staging/cpu-manager/README.md
https://github.com/kubernetes/examples/blob/master/staging/cpu-manager/README.md
https://github.com/kubernetes-sigs/node-feature-discovery
https://github.com/kubernetes-sigs/node-feature-discovery
https://sourceforge.net/projects/e1000/files/ixgbe%20stable/5.2.1
https://sourceforge.net/projects/e1000/files/ixgbe%20stable/5.2.1
https://sourceforge.net/projects/e1000/files/ixgbevf%20stable/4.2.1
https://sourceforge.net/projects/e1000/files/ixgbevf%20stable/4.2.1
https://sourceforge.net/projects/e1000/files/i40e%20stable/2.0.30
https://sourceforge.net/projects/e1000/files/i40e%20stable/2.0.30
https://sourceforge.net/projects/e1000/files/i40evf%20stable/2.0.30
https://sourceforge.net/projects/e1000/files/i40evf%20stable/2.0.30
http://www.intel.com/PerformanceIndex

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 13

MENU
(ADVANCED)

PATH TO
BIOS
SETTING

BIOS
SETTING

SETTINGS FOR
DETERMINISTIC
PERFORMANCE

SETTINGS FOR MAX
PERFORMANCE WITH
TURBO MODE ENABLED

REQUIRED
OR
RECOMMENDED

Energy Perf Bias Power
Performance
Tuning

BIOS Controls
EPB

BIOS Controls
EPB

Recommended

ENERGY_PERF_BIAS_C
FG Mode

Perf Perf Recommended

Package C State
Control

Package C
State

C0/C1 State C6 Recommended

Intel® Ultra Path
Interconnect
(Intel® UPI)
Configuration

Intel® UPI
General
Configuration

LINK L0P
ENABLE

Disable Disable Recommended

LINK L1 ENABLE Disable Disable Recommended

SNC Disable Disable Recommended

Memory Configuration Enforce POR Disable Disable Recommended

IMC Interleaving 2-Way
Interleave

2-Way
Interleave

Recommended

Volatile Memory Mode 2 LM mode 2 LM mode Required

Force 1-Ch Way in FM Disabled Disabled Required

Platform
Configuration

Miscellaneous
Configuration

Serial Debug
Message Level

Minimum Minimum Recommended

PCI Express*
Configuration

PCIe* ASPM
Support

Per Port Per Port Recommended

Uncore Uncore
Frequency
Scaling

Disable Disable Required

Note: To gather performance data5 required for conformance, use either column with deterministic performance or turbo mode

enabled in this table. Some solutions may not provide the BIOS options that are documented in this table. For Intel® Select
Solution, the BIOS should be set to the “Max Performance” profile with virtualization.

4.6 Prepare Software Platform
Kubernetes cluster must be ready before Cloudify can use Kubernetes plugin to orchestrate applications on it. Here we show how
this can be performed with Intel Bare Metal Reference Architecture on premises and describe the same in public cloud instances.

4.6.1 Ansible Host, Control and Worker Node Software Prerequisites

1. As root enter the following commands in Ansible Host:
yum install -y epel-release
wget https://releases.ansible.com/ansible/rpm/release/epel-7-x86_64/ansible-2.7.12-
1.el7.ans.noarch.rpm
yum install -y ./ansible-2.7.12-1.el7.ans.noarch.rpm
easy_install pip
pip2 install jinja2 –-upgrade
yum install -y python36 python2-jmespath

5 See backup for workloads and configurations or visit www.Intel.com/PerformanceIndex. Results may vary.

http://www.intel.com/PerformanceIndex

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 14

2. Enable password-less login between all nodes in the cluster.
Step 1: Create authentication SSH-keygen keys on Ansible Host:
ssh-keygen
Step 2: Upload generated public keys to all the nodes from Ansible Host:
ssh-copy-id root@node-ip-address

4.6.2 Deploy Intel Bare Metal Reference Architecture Using Ansible Playbook

1. Get Ansible playbook:
git clone https://github.com/intel/container-experience-kits.git
cd container-experience-kits/playbooks

2. Copy example inventory file to the playbook home location:
cp examples/inventory.ini .

3. Edit the inventory.ini to reflect the requirement. Here is the sample file.
[all]
k8s-control1 ansible_host=192.168.0.235 ip=192.168.0.235 ansible_user=root
k8s-node1 ansible_host=192.168.0.236 ip=192.168.0.236 ansible_user=root
k8s-node2 ansible_host=192.168.0.237 ip=192.168.0.237 ansible_user=root

[kube-master]
k8s-control1

[etcd]
k8s-control1

[kube-node]
k8s-node1
k8s-node2

[k8s-cluster:children]
kube-master
kube-node

[calico-rr]

4. Copy group_vars and host_vars directories to the playbook home location:
cp -r examples/group_vars examples/host_vars .

5. Update group_vars to match the desired configuration.
vim group_vars/all.yml

BMRA master playbook variables ##

Node Feature Discovery
nfd_enabled: true
nfd_build_image_locally: true
nfd_namespace: kube-system
nfd_sleep_interval: 30s

Intel CPU Manager for Kubernetes
cmk_enabled: false
cmk_namespace: kube-system
cmk_use_all_hosts: false # 'true' will deploy CMK on the master nodes too
#cmk_hosts_list: node1,node2 # allows to control where CMK nodes will run, leave this option
commented out to deploy on all K8s nodes
cmk_shared_num_cores: 12 # number of CPU cores to be assigned to the "shared" pool on each of
the nodes
cmk_exclusive_num_cores: 20 # number of CPU cores to be assigned to the "exclusive" pool on
each of the nodes
cmk_shared_mode: spread # choose between: packed, spread, default: packed
cmk_exclusive_mode: spread # choose between: packed, spread, default: packed

Proxy configuration ##
proxy_env:
 http_proxy: ""
 https_proxy: ""
 no_proxy: ""

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 15

Kubespray variables ##

If you use older Linux kernel versions, interaction between kubelet and Completely Fair Scheduler (CFS) can lead to unnecessary
throttling for the pods fully consuming Hyper-Threaded cores. To avoid that in /etc/kubernetes/kubelet.env configure --
cpu-cfs-quota=false and restart kubelet service with the following command:

systemctl restart kubelet

More on that on https://github.com/kubernetes/kubernetes/issues/67577 .

4.7 Intel Bare Metal Reference Architecture
The Container Bare Metal for 2nd and 3rd Generation Intel® Xeon® Scalable Processor Reference Architecture document provides
guidelines for setting a Kubernetes performant platform for data plane and other performance-sensitive workloads, independent of
vendor implementations. Based on the platform set, various tests can be performed even before such platforms are productized.
Companies that plan to develop their own Kubernetes-based platform can refer to this document for additional details.

4.8 Similar Setup in Public Cloud
Cloud Service Providers (CloudSP) offer managed Kubernetes services with worker nodes based on their instances/VM services.
Such clusters can typically be setup by implementing Infrastructure as a Code concept like Terraform configurations, with
proprietary tools from CloudSP, or manually over CloudSP GUI consoles.

For sensitive compute-intensive workloads, process isolation can be achieved by running pods on nodes of dedicated instances,
and within those pods assigning available cores. This method is suggested because such managed Kubernetes offerings do not
offer support for Kubernetes CPU Manager.

Figure 11 shows an example of simple Terraform configuration that can be applied to create such cluster with AWS.

...
module "eks" {
 source = "git::https://github.com/terraform-aws-modules/terraform-
aws-eks.git?ref=v12.1.0"
 cluster_name = local.cluster_name
 vpc_id = module.vpc.aws_vpc_id
 subnets = module.vpc.aws_subnet_private_prod_ids
 node_groups = {
 eks_nodes = {
 desired_capacity = 1
 min_capacity = 2
 max_capacity = 2
 instance_type = "c5.2xlarge"
 }
 }
 manage_aws_auth = false
}
...

Figure 11. Terraform Configuration

To setup such cluster do:
cd $WORK_DIR/Financial-Services-Workload-Samples/MonteCarloEuropeanOptions/cloud/terraform-eks
terraform init
terraform plan
terraform apply
aws eks update-kubeconfig --region us-east-2 --name my-eks-cluster # or other region
cd ../docker_packaging
before running next commands - check for newer versions of NDF
kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/node-feature-
discovery/v0.7.0/nfd-master.yaml.template
kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/node-feature-
discovery/v0.7.0/nfd-worker-daemonset.yaml.template

Check it with:
kubectl get pods -A -o wide | grep node-feature-discovery

which should list NFD running on all nodes.

https://github.com/kubernetes/kubernetes/issues/67577
https://builders.intel.com/docs/networkbuilders/container-bare-metal-for-2nd-generation-intel-xeon-scalable-processor.pdf

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 16

5 Prepare Tenant Software
For cloud tenant we prepare and package Monte Carlo simulation application. We also configure reporting system and
orchestration.

This section shows how to prepare and use containerized docker images in the following steps:
• Prepare Linux* environment.
• Build containerized image for Monte Carlo simulation from custom Dockerfile.
• Start procedure with Pushgateway, Prometheus*, and Grafana* using prebuilt images.
• Create Kubernetes pod yaml files.
• Create Cloudify deployments.

5.1 Linux Environment
This guide assumes that you are running CentOS* 7. If you run Ubuntu* or another distribution, use equivalent commands like with
apt-get or other package manager.

By default, Kubernetes CPU Manager policy is set to “none” which means that there will be no affinity beyond what the OS
scheduler does automatically. To exclusively use cores on the node for the running pods, change the policy to “static”, and if
needed use taskset and accordingly modify TASKSET variable in .yaml deployment descriptors. This allows containers in the pods
running in the Guaranteed QoS class use some sort of cpu pinning and isolation. In /etc/kubernetes/kubelet.env configure -
-cpu-manager-policy=static and restart kubelet service with the following command:

systemctl restart kubelet

For more information, refer to the article https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies.

Do the compilations and integration on one of the nodes, as root, and have working directory here described as WORK_DIR, like
/root/w.

In bash use the following environment variables, or at the end of /etc/bashrc or ~/.bashrc add:
export WORK_DIR=/root/work # or where you like to have it
export PUSHGWIP=<YOUR_IPV4_ADDR_WHERE_RUN_PUSHGATEWAY_PROMETEUS_AND_GRAFANA>

Restart bash if using .bashrc or similar files.

For start do:
mkdir $WORK_DIR
yum update

5.2 Monte Carlo Simulation Binaries with Intel AVX-512
Intel® System Studio 2020 among many other tools includes Intel® C++ Compiler, Intel® Threading Building Blocks (TBB) and Intel®
Math Kernel Library (MKL). On system where recent versions of compiler, TBB and MKL are installed and configured (environment
variables PATH, TBBROOT and MKLROOT pointing to right folders like those in /opt/intel/system_studio_2020), compile Monte
Carlo simulation binaries with Intel AVX-512 and also previous Intel AVX2 to have it for comparison:

cd $WORK_DIR
git clone https://github.com/intel/Financial-Services-Workload-Samples.git
git checkout
cd Financial-Services-Workload-Samples/MonteCarloEuropeanOptions
export PATH=$PATH:/opt/intel/system_studio_2020/bin # or where is icpc
export TBBROOT=/opt/intel/system_studio_2020/compilers_and_libraries_2020.4.304/linux/tbb # or
where to find TBB
export MKLROOT=/opt/intel/system_studio_2020/compilers_and_libraries_2020.4.304/linux/mkl # or
where to find MKL
make
cp
/opt/intel/system_studio_2020/compilers_and_libraries_2020.4.304/linux/compiler/lib/intel64_lin
/libiomp5.so . # or where to find libiomp5.so
cp
/opt/intel/system_studio_2020/compilers_and_libraries_2020.4.304/linux/tbb/lib/intel64_lin/gcc4
.8/libtbbmalloc.so.2 . # or where to find libtbbmalloc.so.2

Now in the folder you should have binaries MonteCarloInsideBlockingDP.avx2 and MonteCarloInsideBlockingDP.avx512. To test the
binary, try it with:

export LD_LIBRARY_PATH=.

https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 17

./MonteCarloInsideBlockingDP.avx2 1 8192 262144 8k | grep Elapsed

which should give results like:
Time Elapsed = 7.222699

and:
./MonteCarloInsideBlockingDP.avx512 1 8192 262144 8k | grep Elapsed

which will on systems with AVX-512 give shorter elapsed time or error if the system doesn’t have AVX-512:
Please verify that both the operating system and the processor support Intel(R) AVX512F,
AVX512DQ, AVX512CD, AVX512BW and AVX512VL instructions.

5.3 Build Monte Carlo Container Image
CPU pinning and isolation is desired for many cases and workload types including but not limited to latency sensitive workloads. To
solve this problem, a CPU manager can be used like the native Kubernetes CPU Manager. CPU Manager for Kubernetes allocates
CPU resources as fully “isolated” cores by isolating all hyper-thread siblings. It works with isolcpus parameters for the best isolation
from the system processes but can also work without them. Scheduled pod while starting needs to find assigned vCPUs and use
them.

Enter the following commands on the node that can access public Docker Hub with username $DOCKERHUBUSER (or modify
accordingly for local image repository over usual localhost:5000/imagename):

cd $WORK_DIR/Financial-Services-Workload-
Samples/MonteCarloEuropeanOptions/cloud/docker_packaging
export DOCKERHUBUSER=your_docker_hub_username

Build the docker image, enter docker hub credentials when asked, and load it to docker hub with:
./build

Configure pod description YAML files with
./configure

5.4 Configure Pushgateway, Prometheus, and Grafana Under Docker
On node used for reporting, where permanent IP address is PUSHGWIP, perform the following one-time setup procedure:

cd $WORK_DIR/Financial-Services-Workload-Samples/MonteCarloEuropeanOptions/reporting
./run_once

After the first time setup is completed, you only need to use the command:
./start_all

Verify if Grafana, Prometheus and Pushgateway are running with the command:
docker ps | grep -e grafana -e prometheus -e pushgateway

Later when restarting pods with Monte Carlo containers, old metrics can be cleaned with:
./stop_all && ./start_all

Using some modern browser, go to the Grafana page http://$PUSHGWIP:3000, login with admin/password, change password.

Add data source Prometheus with URL http://$PUSHGWIP:9090 at desired Scrape interval, Save & Test.

Create Dashboard using Add Query Prometheus with Metric time_elapsed and desired refresh rate.

5.5 Cloudify Setup, Configuration and Importing Orchestration Blueprint
Install and configure Cloudify Manager image as per Cloudify web documentation, use plug-in for Kubernetes.

Go to directory $WORK_DIR/Financial-Services-Workload-Samples/MonteCarloEuropeanOptions/cloud/cloudify
and there in mc2.yaml and inputs.yaml modify Kubernetes master endpoint and security credentials (api_key: { get_secret:
kubernetes_token }). Into Cloudify Manager as deployment “MC” import mc2.yaml, inputs.yaml and two existing YAML files
describing pods.

6 Orchestrating and Result
6.1 Orchestrating with Cloudify
Now in Cloudify Manager you can install the deployment “MC” by executing workflow Install. This will run with preference to nodes
with Intel AVX-512 (Figure 4) and return result as shown in Figure 12.

https://docs.cloudify.co/latest/install_maintain/installation/manager-image/

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 18

> kubectl describe pod montecarloavx512
Name: montecarloavx512
Namespace: default
Priority: 0
Node: k8s-node1/10.10.1.21
Start Time: Wed, 23 Dec 2020 02:12:51 +0300
Labels: name=montecarloavx512
Annotations: k8s.v1.cni.cncf.io/networks-status:
 [{
 "name": "default-cni-network",
 "interface": "eth0",
 "ips": [
 "10.244.1.36"
],
 "mac": "0a:58:0a:f4:01:24",
 "default": true,
 "dns": {}
 }]
Status: Running
IP: 10.244.1.36
IPs:
 IP: 10.244.1.36
Containers:
 montecarlo:
 Container ID:
docker://4561476b40763fbec6897331e47386de6637e65aa4c710025bfb72284d1a19ed
 Image: >> your_docker_hub_username << /montecarlo
 Image ID: docker-pullable:// >> your_docker_hub_username <<
/montecarlo@sha256:73c86af1c8c511d48ad777d52a26b5e69c3cc38239a625205bf767f212ab58c4
 Port: <none>
 Host Port: <none>
 Command:
 /app/start
 State: Running
 Started: >> timestamp <<
 Ready: True
 Restart Count: 0
 Limits:
 cpu: 8
 memory: 500Mi
 Requests:
 cpu: 8
 memory: 500Mi
 Environment:
 PR: 8
 USE_AVX512: 1
 PUSHGWIP: >> $PUSHGWIP <<
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-d9dtl (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 default-token-d9dtl:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-d9dtl
 Optional: false
QoS Class: Guaranteed
Node-Selectors: node.alpha.kubernetes-incubator.io/nfd-cpuid-AVX512BW=true
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s
Events: <none>

Figure 12. Describe Pod Correctly Assigned

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 19

6.2 Result in Grafana
Now running pods will send results into PushGateway, Prometheus will scrape it from there, and Grafana will show it as graphs
similar to Figure 13.

Figure 13. Grafana Dashboard with Metrics

Kubernetes CPU Manager is isolating pods on assigned vCPUs from other running workloads competing for those CPU cycles. The
elapsed time can still slightly fluctuate if both (in this case, or more of them in generic case) Monte Carlo pods are scheduled at the
same time on the same physical CPU socket when they still share resources like L3 cache, or in public cloud depending on the
selected instance type.

7 Summary
This technology guide describes how to configure optimized Kubernetes in hybrid cloud, and shows how to build, package and
orchestrate applications that will benefit from hardware acceleration and be properly decoupled from infrastructure. Same
methodology can be applied to orchestrate other workloads to benefit from the same or other CPU instructions.

The Multi-Cloud Services on Kubernetes with Cloudify Orchestration and F5 Networks Functions technology guide describes the
benefits of fixed function acceleration devices with Intel® QuickAssist Technology used to accelerate NGINX HTTPS.

https://builders.intel.com/docs/networkbuilders/multi-cloud-services-on-kubernetes-with-cloudify-orchestration-and-f5-networks-functions.pdf

Technology Guide | Multi Cloud Services - HPC Modernization in Financial Services Industries

 20

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others.

 0421/DN/WIPRO/PDF 637679-001US

www.Intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation
	1.3 Motivation

	2 Monte Carlo Simulation and Intel AVX-512
	3 How Cloudify Orchestration Works
	3.1 How to Select Node in Kubernetes Cluster
	3.2 Non-Kubernetes and Hybrid Environments
	3.3 Intent-Based Decoupling of Layers

	4 Software and Hardware Platform
	4.1 Physical Topology
	4.2 Software Topology
	4.3 Hardware Specifications
	4.4 Software Specifications
	4.5 Platform BIOS settings
	4.6 Prepare Software Platform
	4.6.1 Ansible Host, Control and Worker Node Software Prerequisites
	4.6.2 Deploy Intel Bare Metal Reference Architecture Using Ansible Playbook

	4.7 Intel Bare Metal Reference Architecture
	4.8 Similar Setup in Public Cloud

	5 Prepare Tenant Software
	5.1 Linux Environment
	5.2 Monte Carlo Simulation Binaries with Intel AVX-512
	5.3 Build Monte Carlo Container Image
	5.4 Configure Pushgateway, Prometheus, and Grafana Under Docker
	5.5 Cloudify Setup, Configuration and Importing Orchestration Blueprint

	6 Orchestrating and Result
	6.1 Orchestrating with Cloudify
	6.2 Result in Grafana

	7 Summary

